CHEMICAL COMPOSITION OF THE ESSENTIAL OIL OF Rosmarinus officinalis CULTIVATED IN THE ALGERIAN SAHARA

O. Touafek¹, A. Nacer¹, A. Kabouche¹, Z. Kabouche¹, and C. Bruneau²

The volatile compounds obtained by hydrodistillation of the aerial parts of Rosmarinus officinalis cultivated at the Algerian Sahara were analyzed by GC/MS. Thirty compounds were characterized representing 98.2% of the essential oil with 1,8-cineole (29.5%), 2-ethyl-4,5-dimethylphenol (12.0%) and camphor (11.5%) as the major components.

Key words: Rosmarinus officinalis, essential oil, GC/MS.

Rosmarinus is one of the oldest known medicinal plants in Algeria. It is used as an antispasmolytic and as a flavor and fragrance ingredient in the food.

We identified 30 compounds in the hydrodistilled oil of *Rosmarinus officinalis*, cultivated at Oued Souf (Algerian Sahara), with 1,8-cineole (29.5%), 2-ethyl-4,5-dimethylphenol (12.0%), camphor (11.5%), borneol (9.4%), (+)- α -terpineol (9.2%), α -pinene (7.5%), and camphene (5%) as the main components (Table 1). These results are in agreement with the reported essential oils of Italian *R. officinalis* [1] mainly composed of 1,8-cineole (43.3%), α -pinene (18.6%), borneol (8.96%), β -pinene (6.79%), (+)- α -terpineol (3.59%), and the Spanish species [2] mainly represented by camphor (40.85%), 1,8-cineole (12.20%), and borneol (7.62%).

EXPERIMENTAL

GC analyses were performed using a Perkin–Elmer gas chromatograph equipped with two FID, a data handling system, and a vaporizing injector port into which two columns of different polarities were installed: a DB-1 fused silica column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film thickness 0.25 mm) and a DB-Wax fused silica column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film thickness 0.25 mm). Oven temperature was programmed, $45-175^{\circ}$ C at 3° C min⁻¹, subsequently at 15° C min⁻¹ up to 300° C, and then held isothermal (15 min); carrier gas, He at 30 cm/min. GC chiral analyses were performed using a Perkin–Elmer gas chromatograph equipped with a FID, a data handling system, a Cyclodex-B fused-silica column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film thickness 0.25 mm), and a DB-Wax fused silica column ($30 \text{ m} \times 0.25 \text{ mm}$ i.d., film thickness 0.25 mm), injector and detector temperatures, 230° C and 240° C, respectively; carrier gas, He at 42 cm/min.

GC-MS analyses were performed on a Perkin–Elmer apparatus equipped with a DB-1 fused silica column $(30 \text{ m} \times 0.25 \text{ mm i.d.}, \text{ film thickness } 0.25 \text{ mm})$ and interfaced with an ion trap detector (ITD; software 4.1). Injector temperature MS operating parameters were as follows: ion trap temperature, 220°C; split ratio1:40; ionization potential, 70 eV; ionization current, 60 mA; scan range, 40–300 a.m.u, scan time, 1 s.

Identification of components was done by comparison of the retention indices (RI) relative to C_9-C_{17} *n*-alkanes and MS with the corresponding database (NIST library) and with mass spectral literature [3–5]. Relative percentage amounts of the identified components were calculated from the total ion chromatograms by a computerized integrator.

Laboratoire d'Obtention de Substances Therapeutiques (LOST), Faculte des Sciences, Universite Mentouri -Constantine, Campus Chaabet Ersas, 25000 Constantine, Algerie, Fax 213 31 63 53 52, e-mail: zkabouche@hotmail.com;
Universite de Rennes 1, U.M.R./C.N.R.S. N 6509, Campus de Beaulieu, 35042 Rennes cedex, France. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 25-26, January-February, 2004. Original article submitted January 14, 2004.

TABLE 1. Composition	of the Essential	Oil of Rosmarinus	officinalis
----------------------	------------------	-------------------	-------------

Compound	Percentage	RRI*	Compound	Percentage	RRI*
α-Thujene	0.1	924	(D)-Verbenone	0.1	1170
α-Pinene	7.5	930	Bornylacetate	3.0	1180
Camphene	5.0	938	Thymol	0.2	1275
β -Pinene	3.2	963	2-Ethyl-4,5-Dimethylphenol	12.0	1305
2,7-Dimethylocta-2,6-dienol	4.0	1009	2-Tridecane	0.2	1318
1,8-Cineole	29.5	1015	Eugenol	0.1	1327
γ-Terpinene	0.1	1035	β -Caryophyllene	0.1	1414
trans-Sabine hydrate	0.4	1037	Germacrene D	0.1	1474
Fenchol	0.2	1065	β -Caryophyllene oxide	0.1	1581
Camphor	11.5	1095	Isoaromadendrene epoxide	0.7	1590
Borneol	9.4	1134	Alloaromadendrene oxide	1.4	1595
Cryptone	0.1	1148	α-Bisabolol	0.4	1656
α -Terpinenol	9.2	1159			

*Relative Retention Indices calculated against *n*-alkanes.

ACKNOWLEDGMENT

We are grateful to Mr. Christophe Rogemont (Perkin–Elmer Company, Courtaboeuf, France) for his kind help and Mr. Rachid Touzani (University of Ottawa, Chemistry Department) for the bibliographical complements.

REFERENCES

- 1. G. Flamini, P. L. Cioni, I. Morelli, M. Macchia, and L. Ceccarini, J. Agric. Food Chem., 50, 3512 (2002).
- 2. E. Ibanez, A. Oca, G. De Murga, S. Lopez-Sebastian, J. Tabera, and G. Reglero, *J. Agric. Food Chem.*, **47**, 1400 (1999).
- 3. F. W. Mclafferty and D. B. Stauffer, *The Important Peak Index of the Registry of Mass Spectral Data*, John Wiley & Sons, New York, 1991.
- 4. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy*, Allured Publishing Co., Carol Stream IL, 1995.
- 5. A. A. Swigar and R. M. Silverstein, *Monoterpenes–Infrared, Mass, Proton-NMR, Carbon-NMR Spectra and Kovats Indices*, Aldrich Chemical Company Inc. Madison, 1981.